Department of Mathematics

INDIAN SCHOOL AL WADI AL KABIR

Class XII, Mathematics (2025-26)

WORKSHEET – Vectors AND Three-Dimensional Geometry

1.	If a line makes angles α , β , γ with the positive direction of coordinate axes, then write the value of $\sin^2\alpha + \sin^2\beta + \sin^2\gamma$.									
	A	1	В	0		C	2	D		-1
2.	What is the value of $\frac{projection\ of\ \vec{a}\ on\ \vec{b}}{projection\ of\ \vec{b}\ on\ \vec{a}}$ if $\vec{a} = 2\hat{\imath} - 3\hat{\jmath} - 6\hat{k}$ on $\vec{b} = 2\hat{\imath} - 2\hat{\jmath} + \hat{k}$									
	A	$\frac{3}{7}$	В	$\frac{7}{3}$	С		$\frac{4}{3}$	D		$\frac{4}{7}$
3.	Write the coordinates of the point which is the reflection of the point $((\alpha, \beta, \gamma)$ in the XZ plane.									
	Α (α, -	$-\beta, -\gamma)$	В	$(-\alpha,\beta,\gamma)$	C		$(\alpha, -\beta, \gamma)$	D		(α,β,γ)
4.	vectors $\hat{i} + \hat{j} + \hat{k}$ and $\hat{i} - 2\hat{j} + \hat{k}$ are:									
	A parallel		B perpe	ndicular	С	Unit v	ectors	D	null vectors	
5.	If \vec{a} , \vec{b} and $(\vec{a} - \sqrt{2}\vec{b})$ are unit vectors, then the angle between \vec{a} and \vec{b} :									
	A	$\frac{2\pi}{3}$	В	$\frac{\pi}{4}$	С		$\frac{\pi}{2}$	D		$\frac{\pi}{6}$
6.	If $ \vec{a} \times \vec{b} = \vec{a} \cdot \vec{b}$ then the angle between \vec{a} and \vec{b} :									
	A	$\frac{2\pi}{3}$	В	$\frac{\pi}{4}$	С	$\frac{\pi}{2}$		D		$\frac{\pi}{6}$
7.	The two vectors $\hat{j} + \hat{k}$ and $3 \hat{i} - \hat{j} + 4\hat{k}$ represents the two sides AB and AC respectively of a triangle ABC. The length of the median through A:									
	A	$\frac{\sqrt{48}}{2}$	В	$\frac{\sqrt{18}}{2}$	С		$\frac{\sqrt{34}}{2}$	D		$\frac{\sqrt{27}}{2}$
8.	If $ \vec{a} \times \vec{b} = 12$, $ \vec{a} = 8$ and $ \vec{b} = 3$ then the value of $\vec{a} \cdot \vec{b}$									
	A	$12\sqrt{3}$	В	$8\sqrt{3}$			$18\sqrt{3}$			12
9.	If ABCD is a parallelogram and AC and BD are its diagonals. Then $\overrightarrow{AC} + \overrightarrow{BD} =$									
	A	$2\overrightarrow{DA}$	В	$2\overrightarrow{AB}$		С	2 <i>BC</i>		D	$2\overrightarrow{BD}$

10.	The value of $(\hat{i} \times \hat{j}) \cdot \hat{j} + (\hat{j} \times \hat{i}) \cdot \hat{k}$ is :									
	A	1	В	2	С	0	D	-1		
11.	If $\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{i}$ and $\overrightarrow{a} = 2\overrightarrow{i} - 2\overrightarrow{j} + 2\overrightarrow{k}$, then $ \overrightarrow{b} $ equals:									
	A	$\sqrt{12}$	В	$\sqrt{14}$	С	3	D	$\sqrt{17}$		
12.	If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are unit vectors such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$, then find the value of \overrightarrow{a} , \overrightarrow{b} + \overrightarrow{b} , \overrightarrow{c} + \overrightarrow{c} , \overrightarrow{a} .									
	A	$-\frac{3}{2}$	В	$\frac{3}{2}$	С	$-\frac{2}{3}$	D	3		
13.	The scalar product of the vectors $\hat{i} + \hat{j} + \hat{k}$ with a unit vector along the sum of the vectors $2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\lambda \hat{i} + 2\hat{j} + 3\hat{k}$ is equal to 1. Find the value of λ . Ans: 1									
14.	If $\vec{a} \neq 0$, $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$ and $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$, then show that $\vec{b} = \vec{c}$									
15.	Find all the vectors of magnitude $3\sqrt{3}$ which are collinear to vector $\hat{i} + \hat{j} + \hat{k}$. Ans: $\pm 3(\hat{i}+\hat{j}+\hat{k})$									
16.	If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} and \overrightarrow{d} are four non-zero vectors such that $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c} \times \overrightarrow{d}$									
	and $\overrightarrow{a} \times \overrightarrow{c} = 4\overrightarrow{b} \times \overrightarrow{d}$, then show that $(\overrightarrow{a} - 2\overrightarrow{d})$ is parallel to $(2\overrightarrow{b} - \overrightarrow{c})$									
	where $\overrightarrow{a} \neq 2\overrightarrow{d}$, $\overrightarrow{c} \neq 2\overrightarrow{b}$.									
17.	Find λ when the projection of $\vec{a} = \lambda \hat{i} + \hat{j} + 4\hat{k}$ on $\vec{b} = 2\hat{i} + 6\hat{j} + 3\hat{k}$ is 4 units. Ans: 5									
18.	The x coordinate of a point Q on the line joining the points P (2, 2, 1) and R(5, 1, -2) is 4. Find its z coordinate. Ans1									
19.	Let $\vec{a} = \hat{\imath} + 4\hat{\jmath} + 2\hat{k}$, $\vec{b} = 3 \hat{\imath} - 2\hat{\jmath} + 7\hat{k}$ and $\vec{c} = 2 \hat{\imath} - \hat{\jmath} + 4\hat{k}$. Find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} and $\vec{c} \cdot \vec{d} = 15$. Ans: $\vec{d} = \left(\frac{5}{3}\right) \left(32\hat{\imath} - \hat{\jmath} - 14\hat{k}\right)$.									
20.	Two adjacent sides of a parallelogram are $2\hat{\imath} - 4\hat{\jmath} - 5\hat{k}$ and $2\hat{\imath} + 2\hat{\jmath} + 3\hat{k}$. Find the two unit vectors parallel to its diagonals. Using diagonal vectors find the area of the parallelogram. Ans: $2\sqrt{101}$									
21.	Find the angle between the vectors $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ if $\vec{a} = 2\hat{\imath}-\hat{\jmath}+3\hat{k}$ and $\vec{b} = 3\hat{\imath}+\hat{\jmath}-2\hat{k}$ and hence find a vector perpendicular to both $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$. Ans: $\frac{\pi}{2}$, $2\hat{\imath}-26\hat{\jmath}-10\hat{k}$									

Answers(MCQ)

1	С	2	В	3	С	4	D
5	В	6	В	7	С	8	Α
9.	С	10	D	11	С	12	Α
